提供一站式超高分子量聚乙烯解决方案
热搜关键词: 高分子量聚乙烯板材 UPE一次成型件 链条导轨 UPE薄膜 仿真冰板 耐磨条
后台-营销-SEO-头部优化文字处修改
化学改性:
化学改性一般是指化学交联,化学交联又分为过氧交联、偶联剂交联和辐射交联。这是化学改性的主要途径。化学交联改性法多用于改善超高分子量聚乙烯的流动性、提高热变形温度、提高耐磨性以及提高强度等。
过氧化物交联
过氧化物交联工艺分为混炼、成型和交联三步。混炼时将超高分子量聚乙烯(UHMW-PE)与过氧化物熔融共混,超高分子量聚乙烯(UHMW-PE)在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型超高分子量聚乙烯(UHMW-PE),在比混炼更高的温度下成型为制件,再进行交联处理。
超高分子量聚乙烯(UHMW-PE)经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。
国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯超高分子量聚乙烯(UHMW-PE)提高15%~20%,特别是DCP用量为0.25%时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。
偶联剂交联:
超高分子量聚乙烯(UHMW-PE)主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。
硅烷交联超高分子量聚乙烯(UHMW-PE)的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的超高分子量聚乙烯(UHMW-PE)在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联超高分子量聚乙烯(UHMW-PE)。
辐射交联:
在一定剂量电子射线或γ射线作用下,超高分子量聚乙烯(UHMW-PE)分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使超高分子量聚乙烯(UHMW-PE)的线型分子结构转变为网状大分子结构。经一定剂量辐照后,超高分子量聚乙烯(UHMW-PE)的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。
用γ射线对人造超高分子量聚乙烯(UHMW-PE)关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高,从而延长其使用寿命。
有研究表明,将辐照与PTFE接枝相结合,也可改善超高分子量聚乙烯(UHMW-PE)的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。
物理改性:
物理改性一般是指填料改性,也成共混改性。为了改善塑料材料的性能,它是科学研究、生产加工中常用的一种改性方法。
该方法能够简单、方便地满足和改善塑料多种不同性能要求,多数物理改性在提高材料性能的同时还可降低成本,现已广泛采用。
采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对超高分子量聚乙烯(UHMW-PE)进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。
玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,超高分子量聚乙烯(UHMW-PE)仍有相当高的冲击强度。
服务热线